教養問題 (化学基礎・生物基礎)

◆「化学基礎」ならびに「生物基礎」いずれも解答しなさい。

化学基礎

(解答番号は 1 ~ 16 である)

結合の種類	金属結合	イオン結合	分子間結合	共有結合
物質例	アルミニウム	(1)	ドライアイス	(2)
融点	やや高い	(3)	(4)	非常に高い
電気伝導性	(5)	なし(固体)	(6)	(7)
特徴	(8)	硬くてもろい	(9)	きわめて硬い
化学式の種類	組成式	組成式	(10)	(11)

【語群 A】(複数回使用可)

① 展性・	延性に富む	②塩化カルシウム	③ 組成式	4	低い	⑤ 高い
⑥ なし	⑦ あり	⑧ 柔らかくてもろい	⑨ 二酸化ケイ素	ž.	10	分子式

Π.	次の文中の空欄に適切なものを語群 B より選びなさい。	12	~	16
			1 1	

アボガドロ数= 6.02×10^{23} 個 , H=1 , N=14 , O=16 , Na=23 , S=32 , Ca=40

- 1) 200ml の水の物質量は 12 mol、水分子の数は 13 個である。
- 2)水に水酸化ナトリウム NaOH 10g を加えて 500ml の水溶液を作成した。 この水溶液のモル濃度を求めなさい。 14 mol/L
- 3) 硫酸 H_2SO_4 29.4gを中和するためには、1.00 mol/L の水酸化ナトリウムは 15 ml 必要である。 また、水酸化カルシウムでは 16 g で中和される。

【語群 B】

① 22.2	2 22.4	3 6.4	4 18	5 11.1
6 6.68×10^{24}	⑦ 0.5	8 600	9 500	

生物基礎

(解答番号は 17 ~ 30 である)

Ⅲ. 次の文章を読み、	下の問いに答えなさい。
-------------	-------------

遺伝子の本体である ⑦ は、2本の鎖からなるらせん構造をしている。その1本1本の鎖は ① と呼ばれる単位の繰り返し
でできており、 ② は、 ② 、 ② 、 ② という3つの部分で構成されている。
④ 鎖 2 本は、互いの ⑤ がある規則性に従って結合して、らせん構造をとっているため、安定した立体構造であるとい
える。1953 年、 ② は、このように ⑦ が二重らせん構造をした分子であることを提唱した。

問1 文中の ⑦ ~ ② に当てはまる語句の組み合わせとして正しいのはどれか。 17

	$\widehat{\mathcal{D}}$	(1)	•	王	A
1	RNA	アシノ酸	塩基	糖	リン酸
2	RNA	ヌクレオチド	糖	リン酸	塩基
3	RNA	アシノ酸	リン酸	塩基	糖
4	DNA	ヌクレオチド	塩基	糖	リン酸
5	DNA	アミノ酸	糖	リン酸	塩基
6	DNA	ヌクレオチド	リン酸	塩基	糖

問2 文中の ⑦ に当てはまるものはどれか。 18

- ① ワトソンとクリック ② ハーシーとチェイス ③ エイブリー

- ④ グリフィス ⑤ シャルガフ
- ⑥ メンデル

問3 編部分に示すように、一方の ヴ が決まると、それと対になるものも自動的に決まる。 この性質を何というか。

- 配列性
- ② 相補性
 ③ 相対性
- ④ 応答性
- ⑤ 発現性

問4 問3の性質によって決まっている組み合わせとして正しいのはどれか。ただし、Aはアデニン、Gはグアニン、Cはシトシン、 Tはチミンを示す。 20

① AŁG, CŁT ② AŁC, GŁT ③ AŁT, GŁC

問5 ある生物のDNAを抽出して塩基組成を調べたところ、T(チミン)が全塩基の 15%であった。同じDNAに含まれるG(グア ニン)の割合は何%か。 21

- ① 15%

- ② 30% ③ 35% ④ 50% ⑤ 70%

IV. 血糖濃度の調節に関する次の文章を読み、下の問いに答えなさい。

血糖濃度は、自律神経系と内分泌系の連携で調節が行われている。食事をすることで、グルコースが血液中に取り込まれ、血
糖濃度は上昇する。この血糖濃度上昇の情報を <u>22</u> が受け取ると、 <u>23</u> 神経を通してすい臓のランゲルハンス島の B 細胞
が刺激され、 24 の分泌が高まる。 24 は、各組織の細胞でグルコースの取り込みと消費を促進し、また筋肉や肝臓におい
てはグルコースから <u>25</u> への合成を促進することで、血糖濃度を低下させる。また、すい臓においてもB細胞が直接高血糖を感
知し、これによって 26 の分泌が行われることで、血糖濃度を低下させる。
一方、運動や飢餓状態などで血糖濃度が減少すると、その情報を 22 が受け取り、これによってすい臓のランゲルハンス島の
A 細胞からは $\boxed{27}$ が、副腎髄質からは $\boxed{28}$ が、副腎皮質からは $\boxed{29}$ がそれぞれ分泌され、血糖濃度を上昇させる。
問1 22 に該当するのはどれか。
① 副腎髄質 ② 副腎皮質 ③ 脳下垂体前葉 ④ 脳下垂体後葉 ⑤ 間脳視床下部
問2 23 に該当するのはどちらか。
① 交感 ② 副交感
問3 24 ~ 29 に入る適切な語句を下の語群から選べ。(語句は複数回使用しても良い。)
① アドレナリン ② バソプレシン ③ グリコーゲン ④ インスリン
⑤ 糖質コルチコイド ⑥ グルカゴン ⑦ チロキシン
問4 ヒトの場合、血液中にはグルコースが約何%含まれるか。 30
① 0.01% ② 0.1% ③ 1% ④ 10%

教養問題(化学基礎・生物基礎)

◆「化学基礎」ならびに「生物基礎」いずれも解析

化学基礎

(解答番号は	1	~	16	である)
--------	---	---	----	------

I. 次の問いに答えなさい。 1 ~ 12

濃度不明のシュウ酸 10ml 水溶液をホールピペットでコニカルビーカーにとり、2.0mol/L の硫酸 20ml を加えて加温し、 2.0×10^{-4} mol/L の過マンガン酸カリウム水溶液を 20ml 加えて過不足なく中和したとする。次の質問に答えなさい。

1)反応式を示している。係数を語群 A からえらびなさい。(複数回使用可)

【語群 A】

- 2) 下線に示した溶液は 8 色から 9 色となった。この時のシュウ酸水溶液は 10 で、過マンガン酸カリウム水溶液は 11 として働く。語群 B から適切なものを選びなさい。
- 3)シュウ酸のモル濃度を求めなさい。 12 mol/L 語群 B から適切なものを選びなさい。

【語群 B】

① 青	② 黄	3 無	④ 赤紫	\circ 1×10 ⁻³
⑥ 1×10 ⁻²	$\bigcirc 2 \times 10^{-3}$	$8 2 \times 10^{-2}$	⑨ 還元剤	⑩ 酸化剤

Ⅱ. 次の文中の空欄に適切なものを語群 C より選びなさい。 13 ~ 16

1)溶液 3L に硫酸 294g が溶けているときのモル濃度 13 mol/L と規定度 14 N を求めなさい。 原子量は、H=1、O=16、S=32 とする。

2)地球上に存在する塩素原子は \$5Cl、\$7Cl の 2 種類が一定の比率で混ざっている。同じ原子で質量数が異なるものを15という。塩素の原子量は \$5.5 として、\$5Cl が自然界に存在する%を求めなさい。16

【語群 C】

① 同素体	② 同位体	③ 同族元素	4 1	⑤ 0.1
6 2	7 0.2	8 25	9 50	10 75

生物基礎

(解答番号は 17 ~ 30 である)

Ⅲ. 免疫に関する次の文章を読み、下の問いに答えなさい。							
私たちは、病原体などの異物が体内へ侵入しようとするのを防いだり、異物が体内に侵入した場合にはそれを排除したりするし							
くみを持っている。まず、体表面を覆う皮膚や粘膜などが異物の侵入を防ぐバリアとなる。また涙やだ液などには 17 が、胃							
液には強い酸が含まれていて病原体などを分解、殺菌する。							
。この防御をすり抜けて体内に入ってきた異物に対しては、血液中の <u>18</u> であるマクロファージ、好中球、樹状細胞がはたら							
<u>く。これら3つの細胞は、異物を 19 的に細胞内に取り込む</u> ことから食細胞と呼ばれる。このうち、 <u>, 20 は異物を取り</u>							
込むとリンパ節に向かい、そこで異物の情報をT細胞に提示する。							
問1. 17 に該当する酵素はどれか。							
① リパーゼ ② トリプシン ③ リゾチーム ④ レンネット							
問2. 18 に該当するものはどれか。							
① 赤血球 ② 白血球 ③ リンパ球							
問3. 19 に該当するのはどちらか。							
① 特異 ② 非特異							
問4. 20 に最も該当するものはどれか。							
① マクロファージ ② 好中球 ③ 樹状細胞							
問5. 下線部aが示す免疫は何か。また、下線部bによって発動される免疫は何か。a, bの組み合わせとして正しい							
ものを選べ。 21							
a b							
① 適応免疫 獲得免疫							
② 獲得免疫 自然免疫							
③ 適応免疫 自然免疫							
④ 自然免疫 獲得免疫 ⑤ 獲得免疫 適応免疫							
ジ 投刊が							
問6. 下線部aのしくみでは排除しきれなかった異物は、下線部bによって発動された免疫のしくみによって抗原として							
認識される。この抗原に結合する抗体を分泌するのは、次のどの細胞が分化した細胞か。 22							
① 樹状細胞 ② 好中球 ③ ヘルパーT細胞 ④ キラーT細胞 ⑤ B細胞							
問7. 次の中で、免疫に関係のないものはどれか。 23							

予防接種
 アナフィラキシーショック
 心筋梗塞
 血清療法
 AIDS

ら選び正しい文章	にしなさい。また	、下線部の語句や数字が	が正しい場合は下の	の語群から ⑨	を選びなさい。		
a. 2004 年、ヒトの遺伝子数は約 <u>22,000</u> 個であることが報告された。 <u>24</u>							
b. 個々の遺伝子はゲノムを構成するDNAの <u>ごく一部</u> である。 25							
c. ヒトの腎	臓 1 個には約 <u>10</u>	<u>) 万</u> 個のネフロン(腎単化	立)がある。 20	6			
d. 健康な	ヒトの場合、原尿	中のグルコースは、その	ごく一部が細尿管7	から毛細血管へ	、再吸収される。	27	
e . ピ トの血	液中のグルコー	ス濃度は、100ml 中約 <u>1</u>	<u>0</u> mg とほぼ一定に	保たれる。	28		
f. 自律神統	経のうち交感神経	が作用すると心臓の拍	動は促進される。	29			
g. 自律神経のうち交感神経が作用すると胃腸の運動は抑制される。 30							
【語和	洋】						
	① 30 億	② 1億8000万	③ 100万	4 100	⑤約半分		
	⑥ すべて	⑦ 促進	⑧ 抑制	9 正い			

IV. ヒトの体に関する次のa~gの記述について、下線部の語句や数字が間違っている場合は、最も適当な語句や数字を下の語群か